Terrestrial Carbon Community Assimilation System

Thomas Kaminski¹, Wolfgang Knorr¹, Michael Voßbeck¹, Mathew Williams², Timothy Green², Luke Smallman², Marko Scholze³, Tristan Quaife⁴, Tea Thum⁵, Sönke Zaehle⁶, Peter Rayner¹, Susan Steele-Dunne⁷, Mariette Vreugdenhil⁸, Mika Aurela⁵, Alexandre Bouvet⁹, Emanuel Bueechi⁸, Wouter Dorigo⁸, Tarek S. El-Madany⁶, Marika Honkanen⁵, Yann H. Kerr⁹, Anna Kontu⁵, Juha Lemmetyinen⁵, Hannakaisa Lindqvist⁵, Arnaud Mialon⁹, Tuuli Miinalainen⁵, Amanda Qiasalo⁵, Shaun Quegan¹⁰, Pablo Reyez Muñoz¹¹, Nemesio Rodriguez-Fernandez⁹, Mike Schwank¹², Jochem Verrelst¹¹, Matthias Drusch¹³, and Dirk Schüttemeyer¹³

¹The Inversion Lab, Hamburg, Germany
²University of Edinburgh, UK
³University of Lund, Sweden
⁴University of Reading, UK
⁵FMI, Helsinki, Finland
⁶MPI BGC Jena, Germany
⁷TU Delft, The Netherlands
⁸TU Wien, Austria
⁹CESBIO Toulouse, France
¹⁰University of Sheffield, UK
¹⁰University of Sheffield, UK
¹²Swiss Federal Institute for Forest, Snow and Landscape Research, Switzerland
¹³ESA, ESTEC, The Netherlands

4th annual Land Data Assimilation (DA) Community Virtual Workshop on "Developments in Land Data Assimilation" June 25, 2024 ESA UNCLASSIFIED - FOR ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

What is TCCAS?

- The Terrestrial Carbon Community Assimilation System (TCCAS) is built around the newly developed D&B terrestrial biosphere model.
- The focus of TCCAS is the combination of a diverse array of observational data streams with the D&B model to yield a consistent picture of the terrestrial carbon, water and energy cycles.
- The development of TCCAS is being funded through the carbon cluster of the European Space Agency

Current TCCAS team

Terrestrial Carbon Community Assimilation System Study

Project	Partners	Publications	Internal	Contact
---------	----------	--------------	----------	---------

Partners

https://tccas-study.inversion-lab.com

The contact points for the individual partners are:

Contact	Company/Organisation	Country
<u>Thomas Kaminski (coordinator)</u>	The Inversion Lab	Germany
Marko Scholze	Lund University	Sweden
Tea Thum	Finnish Meteorological Institute	Finland
Tristan Quaife	University of Reading	UK
Mathew Williams	University of Edinburgh	UK
Sönke Zaehle	Max Planck Institute for Biogeochemistry	Germany

What does TCCAS offer?

- Open source community system
- Observation operators for optical as well as active and passive microwave observations
- Assimilation on the footprint
- Tangent and adjoint codes
- Modular setup
- Computational efficiency
- Tested on point to regional scales
- Experienced developer team
- Documentation
- User support and training

→ THE EUROPEAN SPACE AGENCY

Variational Data Assimilation

- Assimilating all data in one long assimilation window (need to constrain slow processes)
- Minimisation of a cost function J(x) of a set of process parameters (in core model and observation operators) and initial pool sizes
- Minimisation algorithm uses gradient of J(x) with respect to x
- Gradient efficiently provided by adjoint of D&B

- Manuscript on D&B submitted to GMD
- 2 new SIF models
- revised L-VOD observation operator
- Manual
- Will open GitLab repository in next days
- Training

Model and Observation Operators

SIF

- Leaf level source: Gu et al. (2019)
- RT: L2SM, Tristan Quaife
- Spectral conversion: Oak or Pine spectra observed by Magney and Frankenberg (2019)

$$S_n = s_{SIF} J_n \frac{1 - \psi_{PSIImax}}{q_L \psi_{PSIImax} (1 + k_{DF})}$$

- Alternative Leaf level source (TCCAS manual):
 - Van der Tol et al. (2014) or
 - Li et al. (2019)

A comprehensive land surface vegetation model for multi-stream data assimilation, D&B v1.0

Wolfgang Knorr¹, Matthew Williams², Tea Thum³, Thomas Kaminski¹, Michael Voßbeck¹, Marko Scholze⁴, Tristan Quaife⁵, T. Luke Smallman², Susan C. Steele-Dunne⁶, Mariette Vreugdenhil⁷, Tim Green², Sönke Zähle⁸, Mika Aurela³, Alexandre Bouvet⁹, Emanuel Bueechi⁷, Wouter Dorigo⁷, Tarek S. El-Madany⁸, Mirco Migliavacca^{8,9}, Marika Honkanen³, Yann H. Kerr¹⁰, Anna Kontu³, Juha Lemmetyinen³, Hannakaisa Lindqvist³, Arnaud Mialon¹⁰, Tuuli Miinalainen³, Gaetan Pique¹⁰, Amanda Ojasalo³, Shaun Quegan¹¹, Peter. J. Rayner¹, Pablo Reyez-Muñoz¹², Nemesio Rodríguez-Fernández⁹, Mike Schwank¹³, Jochem Verrelst¹², Songyan Zhu², Dirk Schüttemeyer¹⁴, and Matthias Drusch¹⁴

¹The Inversion Lab, Tewessteg 4, D-20249 Hamburg, Germany ²University of Edinburgh, Edinburgh, UK ³Finnish Meteorological Institute, Helsinki, Finland ⁴Lund University, Lund, Sweden ⁵University of Reading, Reading, UK ⁶Department of Geosciences and Remote Sensing, Delft University of Technology, The Netherlands ⁷Vienna University of Technology, Wien, Austria ⁸Max-Planck Institute for Biogeochemistry, Jena, Germany ⁹DG Joint Research Centre, European Commission, Ispra, Italy ¹⁰Centre d'études Spatiales de la Biosphère (CESBIO), Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etudes Spatiales, Institut de Recherche pour le Développement, Institut National de Recherches pour l'Agriculture, l'Alimentation et l'Environnement, Toulouse, France ¹¹University of Sheffield, Sheffield, UK 12University of Valencia, Valencia, Spain 13 Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland 14 European Space Agency, ESTEC, Noordwijk, The Netherlands

Correspondence: Wolfgang Knorr (wolfgang.knorr@inversion-lab.com)

Abstract. Advances in Earth Observation capabilities mean that there is now a multitude of spatially resolved data sets available that can support the quantification of water and carbon pools and fluxes at the land surface. However, such quantification ideally requires efficient synergistic exploitation of those data, which in turn requires carbon and water land-surface models with the capability to simultaneously assimilate several of such data streams. The present article discusses the requirements for such a model and presents one such model based on the combination of the existing DALEC land vegetation carbon cycle model with the BETHY land-surface and terrestrial vegetation scheme. The resulting D&B model, made available as a community model, is presented together with a comprehensive evaluation for two selected study sites of widely varying climate. We then demonstrate the concept of land surface modelling aided by data streams that are available from satellite remote sensing. Here we present D&B with four observation operators that translate model-derived variables into measurements available from such data streams, namely: fraction of photosynthetically active radiation (FAPAR), solar-induced chlorophyll fluorescence

Example: Las Majadas de Tietar Assimilation (left/middle) and validation (right) variables

Obs (green), prior (red), posterior (blue)

· eesa

Example: Las Majadas de Tietar Assimilation with van der Tol (left) and Li (right) source terms

conversion with Oak spectra

THE EUROPEAN SPACE AGENCY → THE EUROPEAN SPACE AGENCY

TCCAS training event

- Dates: October 7 and 8, 2024
- Format: Lectures and hands-on work on a central computing platform
- Forms of participation: Hybrid or at ESRIN in Italy
- Content: Terrestrial Carbon Cycle, D&B terrestrial biosphere model, Observation Operators, TCCAS
- Target Audience: From student to senior researcher/professor
- Organisers: ESA's Carbon Science Cluster, AIMES, and project team
- Fee: Participation is free, on site participants need to organise their travel and accomodation
- Application: As soon as possible and via https://tccas-study.inversion-lab.com/training.html
- Notification of Acceptance: August 28, 2024

Further Information

- Hybrid user training event on October 7 and 8; Application opens tomorrow
- https://tccas-study.inversion-lab.com
- TCCAS@Inversion-Lab.com
- Thomas.Kaminski@Inversion-Lab.com

