Terrestrial Carbon Community Assimilation System

Thomas Kaminski¹, Tea Thum², Wolfgang Knorr¹, Michael Voßbeck¹, Mathew Williams¾, Timothy Green¾, Luke Smallman¾, Marko Scholze4, Tristan Quaife5, Sönke Zaehle6, Peter Rayner¹, Susan Steele-Dunne⁷, Mariette Vreugdenhil⁸, Mika Aurela², Alexandre Bouvet°, Emanuel Bueechi⁸, Wouter Dorigo⁸, Tarek S. El-Madany⁶, Marika Honkanen², Yann H. Kerr⁹, Anna Kontu², Juha Lemmetyinen², Hannakaisa Lindqvist², Arnaud Mialon⁹, Tuuli Miinalainen, Amanda Qiasalo1, Shaun Quegan¹⁰, Pablo Reyez Muñoz¹¹, **Nemesio Rodriguez-Fernandez⁹ , Mike Schwank12, Jochem Verrelst11, Matthias Drusch13, and Dirk Schüttemeyer¹³**

The Inversion Lab, Hamburg, Germany FMI, Helsinki, Finland University of Edinburgh, UK University of Lund, Sweden University of Reading, UK MPI BGC Jena, Germany TU Delft, The Netherlands TU Wien, Austria CESBIO Toulouse, France University of Sheffield, UK University of Valencia, Spain Swiss Federal Institute for Forest, Snow and Landscape Research, Switzerland ESA, ESTEC, The Netherlands

FLEX Nutzerseminar 7. June

→ THE EUROPEAN SPACE AGENCY

What is TCCAS?

- The Terrestrial Carbon Community Assimilation System (TCCAS) is built around the newly developed D&B terrestrial biosphere model.
- The focus of TCCAS is the combination of a diverse array of observational data streams with the D&B model to yield a consistent picture of the terrestrial carbon, water and energy cycles.
- The development of TCCAS is being funded through the carbon cluster of the European Space Agency

Outline

- Model
- Observation Operators
- Validation
- Assimilation System
- Assimilation at site level
- Analysis of information content
- Assimilation at global scale
- Computational Performance
- **Training**
- Further Information

Developed and tested at site and regional scales

- Within the Landsurface Carbon Constellation Study: https://lcc.inversion-lab.com/
- Relied on comprehensive data base of satellite and Field Data
- Collected over two sites/regions:
	- Sodankylä, Finland
	- Majadas de Tietar, Spain

What does TCCAS offer?

- Open source community system
- Observation operators for optical as well as active and passive microwave observations
- Assimilation on the footprint
- Tangent and adjoint codes
- Modular setup
- Computational efficiency
- Tested on point to regional scales
- Experienced developer team
- Documentation
- User support and training

5

Model and Observation Operators

SIF

- Leaf level source: Gu et al. (2019)
- RT: L2SM, Tristan Quaife
- Spectral conversion: Oak or Pine spectra observed by Magney and Frankenberg (2019)

$$
S_n = s_{SIF} J_n \frac{1 - \psi_{PSIImax}}{q_L \psi_{PSIImax} (1 + k_{DF})}
$$

- Alternative Leaf level source:
	- Van der Tol et al. (2014) or
	- Li et al. (2019)

A comprehensive land surface vegetation model for multi-stream data assimilation, D&B v1.0

Wolfgang Knorr¹, Matthew Williams², Tea Thum³, Thomas Kaminski¹, Michael Voßbeck¹, Marko Scholze⁴, Tristan Quaife⁵, T. Luke Smallman², Susan C. Steele-Dunne⁶, Mariette Vreugdenhil⁷, Tim Green², Sönke Zähle⁸, Mika Aurela³, Alexandre Bouvet⁹, Emanuel Bueechi⁷, Wouter Dorigo⁷, Tarek S. El-Madany⁸, Mirco Migliavacca^{8,9}, Marika Honkanen³, Yann H. Kerr¹⁰, Anna Kontu³, Juha Lemmetyinen³, Hannakaisa Lindqvist³, Arnaud Mialon¹⁰, Tuuli Miinalainen³, Gaetan Pique¹⁰, Amanda Ojasalo³, Shaun Quegan¹¹, Peter. J. Rayner¹, Pablo Reyez-Muñoz¹², Nemesio Rodríguez-Fernández⁹, Mike Schwank¹³, Jochem Verrelst¹², Songyan Zhu², Dirk Schüttemeyer¹⁴, and Matthias Drusch¹⁴

¹The Inversion Lab, Tewessteg 4, D-20249 Hamburg, Germany ²University of Edinburgh, Edinburgh, UK ³Finnish Meteorological Institute, Helsinki, Finland ⁴Lund University, Lund, Sweden ⁵University of Reading, Reading, UK ⁶Department of Geosciences and Remote Sensing, Delft University of Technology, The Netherlands ⁷Vienna University of Technology, Wien, Austria ⁸Max-Planck Institute for Biogeochemistry, Jena, Germany ⁹DG Joint Research Centre, European Commission, Ispra, Italy ¹⁰Centre d'études Spatiales de la Biosphère (CESBIO), Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etudes Spatiales, Institut de Recherche pour le Développement, Institut National de Recherches pour l'Agriculture, l'Alimentation et l'Environnement, Toulouse, France ¹¹University of Sheffield, Sheffield, UK ¹²University of Valencia, Valencia, Spain ¹³Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland ¹⁴European Space Agency, ESTEC, Noordwijk, The Netherlands

Correspondence: Wolfgang Knorr (wolfgang.knorr@inversion-lab.com)

Abstract. Advances in Earth Observation capabilities mean that there is now a multitude of spatially resolved data sets available that can support the quantification of water and carbon pools and fluxes at the land surface. However, such quantification ideally requires efficient synergistic exploitation of those data, which in turn requires carbon and water land-surface models with the capability to simultaneously assimilate several of such data streams. The present article discusses the requirements for such a model and presents one such model based on the combination of the existing DALEC land vegetation carbon cycle model with the BETHY land-surface and terrestrial vegetation scheme. The resulting D&B model, made available as a community model, is presented together with a comprehensive evaluation for two selected study sites of widely varying climate. We then demonstrate the concept of land surface modelling aided by data streams that are available from satellite remote sensing. Here we present D&B with four observation operators that translate model-derived variables into measurements available from such data streams, namely: fraction of photosynthetically active radiation (FAPAR), solar-induced chlorophyll fluorescence

Model and Observation Operators

SIF

- Leaf level source: Gu et al. (2019)
- RT: L2SM, Tristan Quaife
- Spectral conversion: Oak or Pine spectra observed by Magney and Frankenberg

Electron Transport in Canopy Layer n

Let the following

\nLet the following matrix
$$
S_n = s_{SIF} J_n \frac{1 - \psi_{PSIImax}}{q_L \psi_{PSIImax} (1 + k_{DF})}
$$
.

Tunable Scaling Coefficient

Combination of Parameters in Gu model

- Alternative leaf level source models:
	- Van der Tol et al. (2014) or
	- Li et al. (2019)

where J_n is the electron transport in canopy layer n (SI Equ. 16), $\psi_{PSIImax}$ is the maximum photochemical quantum yield

of photosystem II, q_L is the fraction of open photosystem II reaction centres and k_{DF} the ratio of the first order rate constants

D&B (uncalibrated) against FloX at Majadas de Tietar Grass (left), Trees (right); far red (top) and red (bottom)

Figure 11. Average hourly diurnal cycle by month of SIF in the far-red (a) and red (b) for C3 grass (PFT 9) at Majadas de Tietar for months April to December in 2021. D&B simulations (red) against measurements: retrievals made with Frauenhofer line discrimination (black) and spectral fitting method (blue).

·eesa

Figure 10. Average hourly diurnal cycle by month of SIF in the far-red (a) and red (b) for evergreen trees (PFT 3) at Majadas de Tietar for months April to December in 2021. D&B simulations (red) against measurements: retrievals made with Frauenhofer line discrimination (black) and spectral fitting method (blue).

Spatial Detail Examples: Woody biomass (left) and SIF (right) around Majadas de Tietar

D&B simulated woody_biomass (2017)

D&B simulated sif743 (20180901)

Simulation on the footprint/target area Example: SMOS

100m Landcover: Copernicus Land, Buchhorn et al. (2019)

Figure 3: SMOS footprint (ellipse) along with the primary (left) and secondary (right) PFT over the grid defined by the meteorological driving data, with the location of the LM1 site indicated by a cross.

> THE EUROPEAN SPACE AGENCY

 10

Simulation on the footprint/target area Example: TROPOMI

→ THE EUROPEAN SPACE AGENCY

Spatial Detail Examples: TROPOMI (left) and simulated (right) SIF

 $[mW/m2/sr/nm]$

D&B simulated sif743 (20180901)

→ THE EUROPEAN SPACE AGENCY

12

Variational Data Assimilation

- Assimilating all data in one long assimilation window (need to constrain slow processes)
- Minimisation of a cost function $J(x)$ of a set of process parameters (in core model and observation operators) and initial pool sizes
- Minimisation algorithm uses gradient of J(x) with respect to x
- Gradient efficiently provided by adjoint of D&B

Example: Majadas de Tietar

- Savannah site in Extremadura, Spain
- C3 grass and temperate evergreen trees
- Spin up 2015+2016
- Assimilation window 2017-2021
- Joint assimilation of:
	- FAPAR: JRC-TIP, twostream RT
	- SIF: TROPOSIF, Gu model
	- L-VOD: SMOS, empirical
	- surface layer soil moisture: SMOS

Ecosystem: dehesa Mediterranean Holm Oak open woodland (Savanna)

> THE EUROPEAN SPACE AGENCY

Example: Las Majadas de Tietar Assimilation (left/middle) and validation (right) variables scots pine spectra, new observation operator for L-VOD

 \cdot esa

Example: Las Majadas de Tietar Assimilation with van der Tol (left) and Li (right) source terms

conversion with Oak spectra

> THE EUROPEAN SPACE AGENCY

18

> THE EUROPEAN SPACE AGENCY

Analysis of Information Content

A: posterior parameter uncertainty:

 $\mathsf{A} = (\mathsf{M}^{\mathsf{T}} \; \mathsf{R}^{\text{-1}} \; \mathsf{M} \, + \, \mathsf{B}^{\text{-1}})^{\text{-1}}$

B: prior parameter uncertainty R: data uncertainty M: linearised model

Plots show unc. reduction:

 $(\sigma_{\text{prior}} - \sigma_{\text{posterior}}) / \sigma_{\text{prior}}$

5 Experiments at Sodankylä (Everg. Conifer and understorey):

- First, joint assimilation of all 4 data streams
- Then, leaving one data stream out (in turn)

Analysis of Information Content Example: Sodankylä; Uncertainty Reduction Parameters (left), Initial Pool sizes ^{& C}CSA (middle) and Parameters of Observation operators (right)

Analysis of Information Content Example: Sodankylä; Uncertainty Reduction Fluxes (left), initial (middle) and final (right) Carbon Pools

Analysis of Information Content Example: Majadas de Tietar; Uncertainty Reduction Parameters (left), Initial Pool sizes (middle) and Parameters of Observation operators (right)

·eesa

Example: Lapland

- model parameter priors + parameters uncertainties remotely sensed FAPAR $FAPAR +$ uncertainties $L2SM +$ remotely sensed DALEC + Electron Transport Gu/Li/v. d.To $SIF +$ BETHY leaf T, APAR models uncertainties active emotely sense backscattermicrowave slope + incidence angle observation uncertainties slope biomass and operator water pools + water fluxes + \mathcal{L} passive emotely sense microwave $J_{s\text{-}VOC}$ $L-VOD +$ L-VOD observation uncertainties operator remotely sense surface layer $J_{\rm s\text{-}SM}$ surf. layer SM + soil moisture uncertainties $+ + + + + +$ meteorl, drivers soil properties, total misfit eg type/fraction
- E42.5 E37.5° E32.5 Google Earth
- Spin up 2015+2016
- Assimilation window 2017-2021
- Joint assimilation of:
	- FAPAR: JRC-TIP, twostream RT
	- SIF: TROPOSIF, Gu model
	- L-VOD: SMOS, empirical
	- surface layer soil moisture: SMOS

Example: Lapland Validation of posterior GPP (left) and biomass (middle/right)

> THE EUROPEAN SPACE AGENCY

Example: Lapland Validation of posterior GPP

FLUXCOM V2: Martin Jung FLUXCOM V1 2011-2013: Jung et al. (2022)

Lapland, D&B posterior, no fapar, GPP, years 2017-2021

Difference (D&B posterior, no fapar - FLUXCOM)

Current TCCAS team

Terrestrial Carbon Community Assimilation System Study

Partners

https://tccas-study.inversion-lab.com

The contact points for the individual partners are:

Training event

- October 7 and 8
- Hybrid: ESRIN science hub and remote
- Hands-on (Polar TEP) and lectures
- Topics:
	- Terrestrial Carbon Cycle
	- D&B
	- Data Assimilation Method
	- Data Assimilation with TCCAS
- Registration will open shortly
- In parallel: Started to work with test users

27

Further Information

→ THE EUROPEAN SPACE AGENCY

- Hybrid user training event at ESRIN (Frascati, Italy) on October 7 and 8
- https://tccas-study.inversion-lab.com
- TCCAS@Inversion-Lab.com
- Thomas.Kaminski@Inversion-Lab.com

